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Finite-Time Singularities of Solutions of a Class of
Nonlinear SchroÈ dinger Equations

A. Karabis,1 E. Minchev,2 and A. Rauh3
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Solutions to the initial-boundary value problem for a class of nonlinear
SchroÈ dinger equations are considered. Sufficient conditions are found so that the
solutions do not exist for all times t . 0. An explicit upper bound of the t interval
of existence of the solutions is obtained. The time evolution of a singularity is
demonstrated numerically in the case of the one-dimensional SchroÈ dinger
equation.

1. INTRODUCTION

The nonlinear SchroÈ dinger equation occurs in many applications of

physical sciences; for a review see Kivshar and Malomed (1989). For recent

mathematical studies see Gridnev et al. (1996), Kamvissis (1996), Mahmood

(1996), and Pelinovsky and Grimshaw (1996).

In the present paper we investigate finite-time singularities of solutions

for the initial-boundary value problem of SchroÈ dinger equations with potential

term U (x) C , nonlinear term f ( | C | 2) C , and antidamping i a C with a $ 0.

Finite upper bounds are worked out for the time where a singularity evolves.

This is done for bounded space domains in R n, n 5 1, 2, . . . In particular,

we are interested in what type of singularity appears.

For other types of SchroÈ dinger equations similar studies are carried out

in Bainov and Minchev (1996), De Bouard (1991), Domarkas (1991), Glassey

(1977), Nawa and Tsutsumi (1989), and Zakharov (1972).
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2. PRELIMINARY NOTES

Let V , R n be a bounded domain containing the origin, with boundary

- V and V 5 V ø - V . The smoothness of - V must allow the application of

the divergence theorem, that is, - V is a C 1-smooth or piecewise smooth

boundary. We assume that x ? n $ 0 for any fixed x 5 (x1, . . . , xn) P - V ,
where n is the unit outward normal vector at the same point.

Consider the initial-boundary value problem (IBVP) for the following

nonlinear SchroÈ dinger equation:

i C t 5 2 D C 1 U (x) C 2 f ( | C | 2) C 1 i a C , t . 0, x P V (1)

C (0, x) 5 C 0(x), x P V (2)

C (t, x) | x P - V 5 0, t $ 0 (3)

where U P C 1 ( V , R) and f P C (R+, R) are given functions, C 0 is a given

complex-valued function, and a $ 0 is a constant. We note that equivalent

forms of equation (1) as found in the literature can be obtained by writing
the complex conjugate of (1) and substituting U (x) ® 2 U (x), f ® 2 f,
C ® C , where C denotes the complex conjugate of C .

Definition 1. The function C which is defined on [0, T C ) 3 V
(0 , T C # 1 ` ) is called a solution of the IBVP (1)±(3) if :

(i) C and ¹ C are continuous in [0, T C ) 3 V .

(ii) The derivatives C t , C txj, and C xixj (i, j 5 1, . . . , n) exist and are

continuous in (0, T C ) 3 V .

(iii) C satisfies (1)±(3).

Furthermore, let

L q( V ) 5 H C :| C |q, V 5 1 # V

| C (x) | q dx 2
1/q

, 1 ` J
Lemma 1. Each solution C of the IBVP (1)±(3) satisfies the relation

| C (t)|2
2, V 5 | C 0|

2
2, V e 2 a t for t P [0, T C ) (4)

Proof. Multiplying both sides of (1) by C , taking the imaginary part,

and integrating, we obtain

1

2

d

dt # V

| C | 2 dx 5 a # V

| C | 2dx (5)

which gives (4). n
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Now we define

F (s) 5 #
s

0

f (u) du (0 # s , 1 ` ) (6)

Lemma 2. Suppose that a $ 0, and

F (s) # sf (s), " s $ 0 (7)

Then each solution C of the IBVP (1)±(3) satisfies the inequality

| ¹ C |2
2, V 1 # V

U (x) | C | 2 dx 2 # V

F ( | C | 2) dx # E0e
2 a t, t P [0,T C ) (8)

where

E0 5 | ¹ C 0|
2
2, V 1 # V

U (x) | C 0 | 2 dx 2 # V

F ( | C 0 | 2) dx (9)

Proof. We multiply both sides of equation (1) by C t. Then, taking the

real part and integrating, we obtain

1

2

d

dt # V

| ¹ C | 2 dx 1
1

2

d

dt # V

U (x) | C | 2 dx 2
1

2

d

dt # V

F ( | C | 2) dx

5 2 a Im # V

C C t dx

5 a Re # V

C [ 2 D C 1 U (x) C 2 f ( | C | 2) C 1 i a C ] dx (10)

Making use of (7), we can write

1

2

d

dt H | ¹ C |2
2, V 1 # V

U (x) | C | 2dx 2 # V

F ( | C | 2) dx J
5 a H | ¹ C |2

2, V 1 # V

U (x) | C | 2dx 2 # V

F ( | C | 2) dx J
1 a # V

[F ( | C | 2) 2 f ( | C | 2) | C | 2] dx

# a H | ¹ C |2
2, V 1 # V

U (x) | C | 2 dx 2 # V

F ( | C | 2) dx J (11)

Integration of the last inequality yields (8). n
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3. MAIN RESULTS

We introduce the following assumptions:

H1. E0 , 0,

H2. E0 5 0, S (0) , 0,

H3. E0 . 0, S (0) , 0, S 2(0) . 16E0W (0).

Here

S (t) 5 4 Im # V

(x ? ¹ C ) C dx (0 # t , T c ) (12)

and

W (t) 5 # V

| x | 2 | C | 2 dx (0 # t , T c ) (13)

Theorem 1. Let the following conditions hold:
(i) One of the assumptions H1±H3 is satisfied, and a $ 0.

(ii) We have

max H F (s), 1 1 1
2

n 2 F (s) J # sf (s), " s $ 0 (14)

(iii) We have

2U (x) 1 x ? ¹ U(x) $ 0, " x P V (15)

Then the solution C of the IBVP (1)±(3) does not globally exist and the time

interval is bounded by

T c # T c 0 5 2W (0){[S 2(0) 2 16E0W (0)]1/2 2 S (0)} 2 1 (16)

Proof. Multiply both sides of (1) by | x | 2 C . Then, taking the imaginary

part and integrating, we obtain

1

2

d

dt # V

| x | 2 | C | 2 dx 5 2 Im # V

div( C ¹ C ) | x | 2 dx

1 a # V

| x | 2 | C | 2 dx (17)

The first term on the right-hand side of (17) can be rewritten as
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2 Im # V

div( C ¹ C ) | x | 2 dx 5 2 Im # V

(x ? ¹ C ) C dx (18)

Thus (17) takes on the form

dW

dt
2 2 a W 5 S (19)

Next we consider

dS

dt
5 4 Im # V

(x ? ¹ C t) C dx 1 4 Im # V

(x ? ¹ C ) C t dx

(20)5 2 4n Im # V

C t C dx 2 8 Im # V

(x ? ¹ C ) C t dx

The first term on the right-hand side of (20) can be written as

2 4n Im # V

C t C dx 5 4n| ¹ C |2
2, V 1 4n # V

U (x) | C | 2 dx

2 4n # V

f ( | C | 2) | C | 2 dx (21)

The second term on the right-hand side of (20) can be written as

2 8 Im # V

(x ? ¹ C ) C t dx

5 8 Re # V

(x ? ¹ C )[ 2 D C 1 U (x) C 2 f ( | C | 2) C 1 i a C ] dx (22)

5 I1 1 I2 1 I3 1 2 a S

where

I1 5 2 8 Re # V

(x ? ¹ C ) D C dx (23)

5 2 4 o
n

j 5 1 # V F x j
- C
- xj

div( ¹ C ) 1 x j
- C
- xj

div( ¹ C ) G dx (24)

5 2 4 o
n

k,j 5 1 # V F -
- xk 1 xj

- C
- xj

- C
- xk 2 1

-
- xk 1 xj

- C
- xj

- C
- xk 2 G dx
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1 4 o
n

k,j 5 1 # V F d kj
- C
- xj

- C
- xk

1 d kj
- C
- xj

- C
- xk G dx

1 4 o
n

j 5 1 # V

xj
-

- xj

( | ¹ C | 2) dx (25)

5 2 8 Re # - V

(x ? ¹ C )(v ? ¹ C ) d s 1 (8 2 4n)| ¹ C |2
2, V

1 4 # - V

(x ? v) | ¹ C | 2 d s (26)

We further have

I2 5 8 Re # V

(x ? ¹ C )U (x) C dx (27)

5 2 4n # V

U (x) | C | 2 dx 2 4 # V

(x ? ¹ U(x)) | C | 2 dx

1 4 # V

div(xU(x) | C | 2) dx (28)

5 2 4n # V

U (x) | C | 2 dx 2 4 # V

(x ? ¹ U (x)) | C | 2 dx (29)

Finally,

I3 5 2 8 Re # V

(x ? ¹ C ) f ( | C | 2) C dx (30)

5 4n # V

F ( | C | 2) dx 2 4 # V

div(xF( | C | 2)) dx (31)

5 4n # V

F ( | C | 2) dx (32)

Therefore,

I1 1 I2 1 I3

5 4(2 2 n)| ¹ C |2
2, V 2 4n # V

U (x) | C | 2 dx (33)
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2 4 # V

(x ? ¹ U (x)) | C | 2 dx 1 4n # V

F ( | C | 2) dx 1 4 # - V

(x ? v) | ¹ C | 2 d s

2 8 Re # - V

(x ? ¹ C )(v ? ¹ C ) d s

Noting (3), we have Re ¹ C | v and Im ¹ C | v on - V and

Re # - V

(x ? ¹ C )(v ? ¹ C ) d s 5 # - V

(x ? v) | ¹ C | 2 d s (34)

Thus, since x ? v $ 0 for any x P - V , we get

2 8 Im # V

(x ? ¹ C ) C t dx # 4(2 2 n)| ¹ C |2
2, V 1 4n # V

F ( | C | 2) dx

2 4n # V

U (x) | C | 2 dx 2 4 # V

(x ? ¹ U (x)) | C | 2 dx 1 2 a S (35)

Therefore, by virtue of (21) and (8) and noting conditions (ii) and (iii) of
Theorem 1, we obtain

dS

dt
2 2 a S # 8E0e

2 a t 2 4 # V

(2U (x) 1 x ? ¹ U (x)) | C | 2dx (36)

1 4(2 1 n) # V

F ( | C | 2) dx 2 4n # V

f ( | C | 2) | C | 2 dx # 8E0e
2 a t

Consequently,

S (t) # (S (0) 1 8E0t)e
2 a t (37)

and in view of (19)

W (t) # (W (0) 1 S (0)t 1 4E0t
2)e 2 a t (38)

Clearly, the right-hand side of the last inequality becomes negative for

t . T C 0 provided one of assumptions H1±H3 holds. This leads to a

contradiction. n

Remark 1. Let f ( | C | 2) 5 b | C | p 2 1 with b . 0. Then condition (ii) of
Theorem 1 is satisfied if p $ 1 1 4/n.

Theorem 2. Let the conditions of Theorem 1 hold.
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If

lim
t ® T C * # V

| x | 2 | C | 2 dx 5 0 (39)

where T C * is the smallest positive zero of W (t), then

lim
t ® T C *

| C (t)|q, V 5 0 if 1 # q , 2 (40)

and

lim
t ® T C *

| C (t)|q, V 5 1 ` if 2 , q # 1 ` (41)

Proof. Let q P [1, 2) be a fixed number. We choose a constant g such that

0 , g , min H q,
n

2
(2 2 q) J (42)

Then applying the HoÈ lder inequality two times, we get with regard to (4)

# V

| C | qdx 5 # V

| x | 2 g | x | g | C | q dx (43)

# 1 # V

| x | 2 2 g /(2 2 q) dx 2
(2 2 q)/2

1 # V

| x | 2 g /q | C | 2 dx 2
q/2

(44)

5 A0 1 # V

| x | 2 g /q | C | 2 g /q | C | 2(1 2 g /q) dx 2
q/2

(45)

# A0 1 # V

| x | 2 | C | 2 dx 2
g /2

1 # V

| C | 2 dx 2
(q 2 g )/2

(46)

5 A0 1 # V

| x | 2 | C | 2 dx 2
g /2

| C 0|
q 2 g
2, V e a (q 2 g )t ® 0 (47)

as t ® T C *, t , T C *, where A0 is a positive constant. Therefore,

lim
t ® T C *

| C (t)|q, V 5 0 if 1 # q , 2 (48)

If q . 2, then we use the HoÈ lder inequality once more to obtain

0 , | C 0|
2
2, V e 2 a t 5 | C (t)|2

2, V # | C (t)|q, V | C (t)|s, V (49)

where s P [1, 2) and 1/q 1 1/s 5 1. Noting (40) and the assumption that
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# V

| x | 2 | C | 2 dx ® 0 as t ® T C *, t , T C * (50)

we conclude

lim
t ® T C *

| C (t)|q, V 5 1 ` if 2 , q # 1 ` . n (51)

Remark 2. Let the conditions of Theorem 2 hold. The inequality

| ¹ C |2, V $
n

2

| C |2
2, V

|x C |2, V
(52)

implies that

lim
t ® T C *

| ¹ C (t)|2, V 5 1 ` (53)

if * V | x | 2 | C | 2 dx ® 0 as t ® T C *, t , T C *.

Remark 3. Let us consider the IBVP for the following nonlinear SchroÈ d-
inger equation with damping term ( a , 0):

i C t 5 2 D C 1 U (x) C 2 e b t | C | p 2 1 C 1 i a C ,

t . 0, x P V (54)

C (0, x) 5 C 0(x), x P V (55)

C (t, x) | x P - V 5 0, t $ 0 (56)

where b , p, a are given constants such that p . 1, a , 0. Using the

transformation C (t, x) 5 exp[ 2 b t /( p 2 1)] f (t, x), the IBVP (54)±(56) takes

the form

i f t 5 2 D f 1 U (x) f 2 | f | p 2 1 f 1 i g f , t . 0, x P V (57)

f (0, x) 5 C 0(x), x P V (58)

f (t, x) | x P - V 5 0, t $ 0 (59)

where g 5 a 1 b /( p 2 1).

If we assume that b $ 2 a ( p 2 1), then g $ 0 and we obtain the IBVP

with antidamping term, to which Theorems 1 and 2 can be applied.

Remark 4. The existence of the L qÐ norms of C in the interval

0 # t , T C * (T C * # T C 0) does not prevent the occurrence of a singularity

of ¹ C . If the solution of the IBVP (1)±(3) exists for 0 # t , T C *, then

Theorem 2 would imply that the wave function C concentrates at the origin
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x 5 0 . Since this is not plausible in view of the arbitrary possible choice

of the origin, Theorem 2 strongly suggests that a singularity of C xi or C xixj

occurs before the time T C *; T C * is the smallest positive zero of W (t).

4. NUMERICAL EXAMPLES

We give some numerical examples which confirm the predictions of

Theorem 1 and also discuss the nature of the evolving singularity. For simplic-
ity we choose the one-dimensional case of equation (1) with damping factor

a 5 0. Furthermore, we adopt the potential and nonlinear term as U (x) 5
x 2 and f ( | C | 2) 5 C | C | 4, respectively. Here C is a positive constant. Both

choices are consistent with the conditions of Theorem 1, namely (14) and

(15). Equation (1) then reads

i C t 5 H C ; H 5 2
-

- x 2 1 x 2 2 C | C | 4; x P ( 2 1, 1); (60)

C (t,x 5 6 1) 5 0

The formal solution for small time steps D t is written, in terms of a unitary

operator (Press et al., 1992, pp. 851±853), as follows:

C (t 1 D t, x) 5 F 1 2 iH D t /2

1 1 iH D t /2 G C (t, x) 1 O ( D t 2) (61)

When the operator H is discretized by means of second-order differences,

the formula

1 1 2 iH
D t

2 2 C (t 1 D t, x) 5 1 1 1 iH
D t

2 2 C (t, x) (62)

amounts to the Crank±Nicholson scheme.

Using N 1 1 grid points along the x axis, we arrive at an (N 2 1) 3
(N 2 1) complex, nonlinear, algebraic system of the form

A(n 1 1) C (n 1 1) 5 B(n) (63)

where

C (n 1 1) 5 [ C n
2, . . . , C n

N]t;

C n
j 5 C (n D t, 2 1 1 ( j 2 1) D x) (64)

j 5 1, . . . , N 1 1;

n 5 0, 1, 2, . . .

with space step D x such that N ? D x 5 2.
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Moreover, A (n) is a tridiagonal matrix with aj , b n
j , and cj as subdiagonal,

diagonal, and superdiagonal entries, respectively. They read

aj 5 2
1

2
i

D t

D x 2 ; j 5 3, . . . , N (65)

b n
j 5 1 1 i

D t

2 F 2

D x 2 1 x 2
j 2 C | C n

j | 4 G ;

j 5 2, . . ., N;

xj 5 2 1 1 ( j 2 1) D x (66)

cj 5 2
1

2
i

D t

D x 2 ;

j 5 2, . . . , N 2 1 (67)

Note that the diagonal entries depend on time due to the nonlinear term. In
our case, because of the boundary conditions, C n

1 5 C n
N 1 1 5 0, we have

B (n) 5 A (n) C (n) (68)

Equation (63) is solved for the vector C (n 1 1) as follows:

C (n 1 1) 5 [A (n 1 1)] 2 1 A (n) C (n) (69)

Since A(n 1 1) depends on C (n 1 1), we proceed iteratively starting with A(n 1 1)

5 A(n). The inversion of A(n 1 1) is effectively computed by means of the

Thomas algorithm (Press et al., 1992, pp. 50±51).

We checked numericaly three cases corresponding to the three main
assumptions (H1±H3) of Theorem 1. As first case we considered equation

(60) with C 5 15 and initial condition C (0, x) 5 1 2 x 2. With this, all

conditions of Theorem 1 are fulfilled including the assumption H1. According

to Theorem 1, the upper bound of the time interval in which a singularity

will occur is T c 0 . 0.25. Using the numerical method discribed above with

D x 5 10 2 3 and D t 5 10 2 6 we find evidence for a singularity at time T C .
0.081 (see Fig. 1).

As a second case we considered equation (60) with C 5 15.08203125

and initial condition C (0, x) 5 (1 2 x 2) exp[ 2 ix2], and as a third case C
5 45 with initial condition C (0, x) 5 (1 2 x 2)exp[ 2 i3x 2/2]. Again, all

conditions of Theorem 1 are fulfilled including the assumptions H2 and H3

for the second and the third cases, respectively. With the same time and space
steps ( D x 5 10 2 3, D t 5 10 2 6) we find evidence for a singularity at time T C

. 0.06 for the second and T C . 0.031 for the third case. The predictions

for the corresponding upper bound of Theorem 1, are T C 0 . 0.125 and

T C 0 . 0.1 respectively.
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Fig. 1 Real part of the wave function C (solid line) and its space derivative (dot-dashed line)

at times t 5 0.06, 0.07, 0.074, and 0.0815. The initial function is C (0, x) 5 1 2 x 2.

The results are stable with respect to different discretization steps. In a

range starting from 10 2 2 up to 10 2 4 for D x and from 10 2 4 up to 10 2 6 for D t
we confirm qualitatively the same results and the same critical time T C .

5. FINAL COMMENTS

In the proof of Theorem 1 we obtained an inequality for the variance

function W (t) rather than a conservation law as found in Ablowitz and Segur

(1979) because (a) the derivatives of the field C are not necessarily zero at

the boundary - V and (b) the nonlinearity is not restricted to cubic terms.
According to Theorem 2, if the singularity appears at time T C * (T C * #

T C 0) which is the smallest positive zero of W (t), then the wave function

completely focuses at the origin x 5 0. This is not observed in the numerical

example considered. Rather we have evidence that a significant part of the

norm | C |2, V has support in the interval 0 , | x | , 1. This implies that in
the examples of the last section singularities emerge at a time T , T C *.

We have no conclusive evidence on the nature of the singularity corres-

ponding to Fig. 1. Most probably we have a cusp with the slope of C x | x 5 0

jumping from 2 ` to 1 ` . However, we do not know whether or not the cusp

is at a finite value of C (x 5 0). This question could be examined numerically in
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principle by an adaptive grid scheme. However, we think that some analytical

singularity analysis should be feasible.

Regarding basic hydrodynamic models, numerical evidence for finite-
time singularities was found for the Euler equation (Grauer and Sideris,

1995). It is still an open question whether such singularities may arise also

in the dissipative case of the Navier±Stokes equations (NSE). This problem

is related to the fundamental unsolved problem of global existence and

uniqueness of the solutions of the NSE (Doering and Gibbon, 1995; Rauh,

n.d.). In view of this we were interested in whether, in the case of the nonlinear
SchroÈ dinger equation, Theorem 1 could be extended to the dissipative region

with damping parameter a , 0. Our attempts have not succeeded so far.

Without effort we found suitable examples which comply with the condi-

tions of Theorem 1. As is immediately seen, the following potentials and

nonlinear terms obey conditions (14) and (15):

U (x) 5 o
`

n 5 0

anx
2n; an $ 0; o

`

n 5 0

an , ` (70)

f (s) 5 o
`

p P N
p $ 2/n

bps
p; bp $ 0; o

`

p $ 2/n
bp , ` ; s $ 0 (71)

With the choice U (x) 5 x 2 we could write down any initial state C (t
5 0, x) 5 C 0(x) and then adapt the coefficient C of the nonlinear term in

order to have a critical case. So we think that Theorem 1 covers more

than an exceptional set of models. The finite-time criticality of a nonlinear
SchroÈ dinger equation in two space dimensions, as reported in Ablowitz and

Segur (1979), is consistent with Theorem 1.
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